
1150740-7475/01/$10.00 © 2001 IEEEMay–June 2001

D&T: What makes C++-based design different

from existing techniques?

Sanguinetti: As designs get more complex, sys-

tem architects model in C to iteratively refine

from an architecture model to a hardware

implementation. C++ is the best, perhaps only,

language that we have between the starting

and, ultimately, the ending point. C++ offers a

unified environment for architects, verification

engineers, and implementation engineers.

Schaumont: We’re using C++ because, first,

C++ gives us object-oriented design technolo-

gy, which is more powerful than whatever has

been done till now. The second reason has to

do with reusability: C++ supports better

reusable design description. Finally, C++ gives

us a single environment, which means we can

model at multiple levels of abstraction.

Bhatt: C++ lets us handle legacy concisely. The

object-oriented concept doesn’t really matter.

When I need to get a job done, the embedded

aspect of C++ is very important. C++ also sim-

plifies hiring. I don’t need special vendor-pro-

vided training, so it’s easier for a person to

become productive in my environment. Third,

and most important, I don’t need a vendor-pro-

vided compiler—I can use my own—to com-

pile the very custom language solution. This

simplification when using C++ lets us do all

kinds of other things more easily than if we

were to create a language by ourselves.

Liao: In addition to the gradual refinement and

the multiple levels of abstraction, one of the

many advantages is in the area of test benches,

which the system designer can write or has writ-

ten in C or C++. If we need to rewrite our mod-

els in an HDL, we would have to do a lot more

work to adapt the test benches into our simu-

lation environment. So by using C++, we can

very easily reuse the test benches.

Lennard: Object orientation allows us to

System-on-Chip
Specification and
Modeling Using C++:
Challenges and Opportunities

The recent push toward C++-based modeling of IC and
system designs—either through libraries like SystemC,
Cynlib, or OCAPI or through abstractions like SpecC—
has renewed the long-running debate on the design
community’s appropriate choice of a modeling language.
The focus of this panel was on the technical issues fac-
ing development and adoption of C++-based modeling
approaches, the new capabilities the user community
can realistically expect, and the difficulties that remain.

IEEE Design & Test thanks roundtable participants
Rahul Bhatt (Intel), Giovanni De Micheli (Stanford

Univ.), Daniel D. Gajski (Univ. of California, Irvine),
Christopher K. Lennard (Cadence), Stan Liao
(Synopsys), John Sanguinetti (CynApps), and Patrick
Schaumont (IMEC). D&T gratefully acknowledges the
help of Rajesh K. Gupta (Univ. of California, Irvine), our
moderator; and Kaushik Roy (Purdue Univ.), our
Roundtables Editor, who organized the event. Special
thanks go to the IEEE Computer Society Design
Automation Technical Council and the IEEE Circuits
and Systems Society CANDE Technical Committee, for
sponsoring the roundtable.

ICCAD 2000 Roundtable

implement true system refinement because

we’re able to instantiate the way that objects

communicate with one another through classes

and methods. This lets us develop rapid-substi-

tution methods for the reuse of IP components

and models. The key is that the language of

design implementation is not critical; what’s

critical is how we build an environment to

enable reuse based on object orientation. I

agree that C++ makes it easy to hire and train

people, yes. People understand what C++ syn-

tax is. But the semantics that underlie the exe-

cution of any C++-based system language

depend on how we’re going to structure our

entire environment around C++. So the fact that

we are using C++ doesn’t give us an answer; it

has to do with how we architect the entire

object environment. That’s much more critical

than the language itself.

De Micheli: Designers have been using C and

C++ for hardware design for many years. There

is nothing new about that. What’s new is the

possibility of having synthesis and verification

tools that apply directly to the C/C++ descrip-

tions. Research and development emphasis in

EDA should focus on this direction.

D&T: What abstraction levels of design can be

done with C++? Are we talking about a system-

level view of things or more of a gate level

design?

Sanguinetti: Object orientation is the key; C++

is just the environment to define objects that

can introduce different abstraction levels. The

idea of building complex systems in a top-

down, iterative refinement method using layers

of abstraction is at least 30 years old and has

been done in software for a long time. What

we’ve started to do recently is create formal lay-

ers of abstraction in C++. Over the past year or

so, a couple commercial or quasi-commercial

offerings have created a hardware abstraction

layer in C++—essentially, an RTL layer. But

because C++ has this capability of creating

objects that can build on other objects—build-

ing layers of abstraction by extension—there’s

really no limit to the level of abstraction we can

represent.

Schaumont: I agree; whatever is an executable

level, we can do in C++. We start from a perfor-

mance model in which all architecture artifacts

are abstracted into simulation time. Next, we

incrementally refine this model. We go down

over all models of computation that we want to

work with, like data flow, RT, and even down

to continuous-time modeling if we want to

cope with analog aspects.

Gajski: I’ll have to disagree. When I ask compa-

nies for design examples, they give me C, never

C++, examples. The reason is that every proces-

sor in the world has a C compiler, so everybody

would like to do C. However, C cannot represent

hardware concepts like parallelism. Therefore,

C++ is the quick choice, since we can extend it

by adding classes. But let’s not deceive ourselves

that adding classes is just another C++ extension.

We have to learn the meaning of every class and

what it’s going to do in our design. Therefore,

we’re creating a new language—we would like

to call it C++, but C++ with classes for hardware is

essentially a new language.

Bhatt: Learning is definitely involved.

Especially when we bring in a new library, we

have to make sure we have the training, and it

doesn’t solve our primary problem—we still

don’t have parallelism in our designs by any

means. As a result of using C++, there’s a fair

amount of complexity, partly due to perfor-

mance, when we’re running it for complex

machines, and it’s been hard to achieve some

of the research that we’ve done. I’ve been work-

ing with object orientation for a long time, and

it still doesn’t solve the whole problem.

ICCAD 2000 Roundtable

116 IEEE Design & Test of Computers

Sanguinetti:
Object orientation
is the key; C++ is
just the environment
to define objects
that can introduce
different abstraction
levels.

Liao: My answer to the question of what

abstract levels of design can be done in C++ is,

at whatever level we wish. We can have mixed

levels of design, different parts of design at dif-

ferent levels. And we can also model our envi-

ronment—even do analog design in C++.

Gajski: A language that models everything

from requirements to transistors would be too

complicated, too big, and too difficult to imple-

ment, maintain, and train. Below the RTL level,

we need electrical engineering expertise: tim-

ing, currents voltages, and so on. So I’d say that

C++ abstractions should be above the RTL level,

and that we shouldn’t go below the RTL level

since we already have Verilog, VHDL, and

extensions to VHDL. Therefore, we do not need

another language.

De Micheli: To some extent, the C/C++ repre-

sentation would represent a sign-off level

between system designers and component

designers. It should not be a hard boundary; we

want some flexibility because different design

styles, design methodologies, and different

applications may be of interest.

D&T: We’re saying we want more high-level

abstraction but not a language that does every-

thing. What are we looking for with C++? Is

there a need for object orientation in modeling

when we talk about IC system design?

Sanguinetti: There’s a need for object orien-

tation in hardware design, certainly. We don’t

usually think of it, but Verilog and VHDL are

both object-oriented languages; they’re just

pretty weak ones. C++ is a much richer object-

oriented language, but one of the reasons we

find C++ attractive is because it matches so well

to the way we think about hardware.

D&T: What does C++ buy us? It does buy ease

in developing tools; what other things does it

buy?

Lennard: The real issue is how we architect the

entire design-refinement flow with a class hier-

archy, from a functional specification down to

a hardware instantiation. At the hardware level,

we can get rid of the object hierarchy by flat-

tening it and representing it in a VHDL or

Verilog-like manner. But at higher levels of

abstraction, what should the class hierarchies

represent? Allowing arbitrary class hierarchies

would make C++ very difficult to reuse.

Schaumont: With respect to reuse, the hard-

ware design community has been focused for

many years on the structural form of reuse.

Object orientation allows exactly the next step

beyond the structural view. Software engineer-

ing communities have already figured out how

to work with combinations of objects. They talk

about design patterns—which is actually about

documenting the way we do or reuse things.

We can use exactly the same design patterns

for documenting the way we design a system,

which makes it much more reusable. One

improvement that we can get from object-ori-

ented design is reuse at the behavioral level.

Lennard: In terms of reuse, consider platform-

based design techniques. The platform will fix

how system components communicate with

one another, but then there’s the issue of how

we predict communication performance. In

theory, the platform-based design concept lets

us percolate statistics, in terms of delay and

congestion estimates, up to the top levels of

abstraction to get a view of how the platform

structure is going to perform before we use it.

But, to date, there are no clear strategies on

how to manage these performance statistics in

an object hierarchy.

Gajski: The object-oriented approach provides

encapsulation for a concept or a component.

117May–June 2001

D&T [Gupta]:
We’re saying we
want more high-
level abstraction but
not a language that
does everything.
What are we
looking for in C++?

However, if every company or designer puts

slightly different information into that encap-

sulation, the whole thing isn’t worth much.

Therefore, we must first agree on what infor-

mation is included in these classes.

Liao: The hardware community has focused,

understandably, on implementation details to

extract the last bit of performance out of a

design. The object-orientation features we’ve

used so far are structure and instantiation and

not much else, not abstraction. Perhaps one

day the hardware community won’t care so

much about performance, but will face the real-

ities of time to market and be compelled to

apply software techniques. Then they could use

more abstraction. For example, we might

model and deal with a protocol at an abstract

level, and there might be different implemen-

tations with different trade-offs for that proto-

col. And we can just plug in the different

implementations to evaluate the trade-off.

Someday, that might be done.

D&T: Do you think that designers will choose

to give up performance in favor of gains in

design productivity?

Bhatt: I think we’ll want to compromise. We’re

already at the point where we can compromise

if the complexity that we’ve reached right now

results from a specification that’s so general that

a certain implementation might be different.

We’re finding a lot of complexity and issues, like

time to market. I think we’re not compromising

on complexity but on time to market. We must

recognize, regardless of how much we’d like

object orientation, that with extremely large,

complex systems, if we don’t have a predefined

means of communication or framework within

which all these C++ libraries are supposed to

operate, we’ll have serious problems. One little

tweak will break the whole definition. And then

we can’t reuse the class library, and we’ll have

to rewrite some portion; every tool does. All of

us, in our tools, provide a capability to go out-

side the framework and then come back. So the

framework is as important. If we look at the

changes that have occurred in terms of MFC

[Microsoft Foundation Classes], it’s a very good

example of how MFC has gone to COM and to

ActiveX instead of just relying on class reuse.

Sanguinetti: The single greatest source of intel-

lectual property for reusability is algorithms

written in C. There are far more algorithms

available for almost anything than what’s avail-

able in C++ classes or Verilog or VHDL. When

we talk about design reuse, I think we get a little

parochial in the EDA world. We just don’t do

much design reuse in any real sense.

D&T: Even with Verilog and VHDL, high-level

synthesis is not yet widely used. Isn’t C++ going

to make synthesis even more difficult? Is it a

step backward or does it actually put us a step

forward in synthesis?

De Micheli: Looking at synthesis from the C/C++

perspective, we find new challenges. C/C++ hard-

ware models have a higher abstraction level. For

example, we find different data types in C/C++

that don’t exist in VHDL, Verilog HDL, or lower-

level languages. The market currently offers only

partial synthesis tools, making the C/C++

approach less attractive to the designer than it

should. Designers want C/C++ with a full synthe-

sis capability. Some research tools have shown

that it is possible to cope with the advanced fea-

tures of the languages, such as resolving pointers

and handling dynamic memory allocation in

hardware. But we still need to see these ideas per-

colate into commercial tools. Clearly, the expres-

sive power of a hardware modeling language

relates to the hardware synthesis capability.

Lennard: But how far do we need synthesis to

go; are we trying to synthesize protocol tasks,

ICCAD 2000 Roundtable

118 IEEE Design & Test of Computers

Liao:
Perhaps one day
the hardware
community won’t
care so much about
performance, but
will face the reality
of time to market….

for example? Those could be “synthesized” into

software, but then we’re changing the conven-

tional meaning of synthesis. Are we only talk-

ing about synthesis into hardware? If we’re

talking about synthesis into hardware, then we

have to restrict designers from writing objects

that use recursion. So how critical is the con-

cept of recursion, for example, at becoming

part of synthesis capabilities? Is synthesis going

to be something we push for in the software

domain, as well as in hardware?

De Micheli: One basic issue is migration

between software and hardware models.

Designers don’t want to rewrite models (from

C to Verilog/VHDL), because this is an error-

prone, time-consuming task. We cannot com-

pile Verilog/VHDL into software, and so using

these languages prevents easy migration from

hardware to software.

Liao: As an implementer of synthesis tools, I

struggled with the trade-off between how much

I could synthesize and the quality of results—

automatic synthesis will only go as far as the

designer is willing to accept the quality of

results. The larger the subset of C++ we need to

support in synthesis, the worse the quality of

results we can expect. There’s a limit to C++ syn-

thesis in terms of practicality; beyond that we’ll

probably look for domain-specific solutions that

will improve productivity. Using C++ solely is

probably not the best path for EDA providers.

Gajski: C is a software model of computation

that executes everything sequentially on a sin-

gle processor. C and C++ do not deal well with

the concept of parallelism. However, every

hardware processor is parallel and pipelined.

Therefore, we’ve got something that’s sequen-

tial in software that we have to turn into some-

thing very parallel, with new concepts that

software people can’t even comprehend, like

pipelines. I don’t believe that we can really syn-

thesize from C; we have to introduce hardware

concepts by extending C or adding appropriate

classes to C++.

Bhatt: It’s hard to make a system that can’t be

synthesized yet still be sellable. I’m not saying

we can’t impose constraints, however, whether

it’s on C++ or libraries. We would do ourselves

an injustice if we limited ourselves by not per-

mitting certain kinds of abstractions for the

capability of nonsynthesizable systems. I think

the best bet would be to achieve synthesis with

some restrictions that we propose.

De Micheli: I agree; we need C++ classes in

order to define semantics and synthesis. A com-

plete suite of classes is something we’ll achieve

over time. I don’t think that C++ design will be a

stable solution for electronic system design if

we don’t define precisely the semantics, syn-

thesizeability, and verifiability of the whole lan-

guage. If we limit ourselves to subsets of the

language, we will find ourselves with several

dialects. This will defeat the purpose of finding

a unifying language.

Schaumont: In the past 10 years of high-level

synthesis, people have concluded that, basi-

cally, high-level synthesis doesn’t work at the

system level. This is why we need platform-

based design. Synthesis, however, works very

well for local solutions. Software designers have

already figured out how to deal with this. Large

software systems are not synthesized; they are

constructed as assemblies of objects and com-

ponents. This also holds for C++-based design:

We glue a system together with fixed commu-

nication artifacts but will use automatic com-

pilation locally within a component.

Lennard: There’ll always be the case where we

have things that are not necessarily synthesiz-

able. But that does not reduce the value of the

language. Engineers nowadays spend about 70

119May–June 2001

Schaumont:
In the past 10 years
of high-level
synthesis, people
have concluded
that, basically, high-
level synthesis
doesn’t work at the
system level.

to 80 percent of their time in verification. So

here’s a question: If I’m going to build an

abstract model, where am I going to put its

expense? The model’s development cost must

be absorbed into one of two areas: either into

the design cost—in other words, that model

should be synthesizable or usable in the soft-

ware implementation—or into the develop-

ment cost of the test bench, which is not a

synthesizable component. So if we build a fully

executable model and we can show that that

executable model is “golden,” we can associ-

ate the development of the abstract models that

aren’t synthesizable into the cost of verification

development. That’s where we’ll see that we

don’t have to synthesize everything.

Bhatt: That’s exactly why I said we shouldn’t

compromise all other abilities to the abstraction

simply for synthesis. I’ve seen enough difficul-

ties result from golden reference models. But as

a community, we should develop usage models

of things we can abstract. This is where “golden

reference” is very important. Yes, synthesis is

very important for certain things, but let’s not

shortchange our level of abstraction ability.

D&T: Let’s talk about standardization. How

much standardization is needed for tool devel-

opers, how much for designers?

Sanguinetti: Standardization is clearly impor-

tant. There’s a lot to be gained by looking at dif-

ferent ways of doing things before we make a

decision that this is what’s going to be the “stan-

dard.” The good thing about the situation we’re

in with C++ is that because we’re essentially

talking about class libraries that implement lay-

ers of abstraction, we can agree on the seman-

tics of the abstraction layer. And competing

implementations for doing that, if we have

them, won’t be all that far apart. We can agree

on the semantics fairly easily. Eventually, we’ll

have standards for several different layers.

Schaumont: I think we don’t need standard-

ization to build a good tool. We need stan-

dardization because we want to exchange

models. The whole issue here is actually not a

tool issue; it’s an IC issue.

Gajski: Simulation is a weaker concept than

synthesis and verification. As long as it’s syn-

tactically correct and produces correct results,

anybody can write a simulation model and do

simulation. To synthesize and verify, we have

to understand what that model means.

Therefore, synthesis and verification imposes a

much stronger set of requirements on the lan-

guage, on the tools, and everything else. The

only way to solve this problem is to have some

fixed levels of abstraction with well-defined

semantics, so that everybody knows what we

mean when we write a + b. Syntax is not

enough. Look at VHDL: It’s a simulation lan-

guage and it’s not synthesizable. And what we

did after 10 years of messing around: We have a

synthesizable VHDL subset. To avoid this mess

again, let’s define a synthesizable language and

not expand it. Then we’ll have one language

that’s synthesizable, verifiable, and simulatable.

Lennard: Some things in standardization I’ve

found quite frustrating, such as when one little

group of people disagrees with another: rather

than building to an agreement, they go off and

start their own little initiatives. Then the prob-

lem is, what’s a standard? A standard isn’t a stan-

dard unless everyone agrees. At least to start

talking of standardization, we need to agree on

taxonomy, terminology, and semantics.

De Micheli: If you are a user, you love stan-

dards. If you are a developer, you hate them.

Why? Because if you represent any research

group or any EDA developer, freedom from stan-

dards gives you a competitive advantage. Do we

currently have a standard for synthesis from

ICCAD 2000 Roundtable

120 IEEE Design & Test of Computers

De Micheli:
If you are a user,
you love standards.
If you are a
developer, you hate
them.

C/C++? I’m afraid that at this stage of develop-

ment, it is still too early to talk about standards.

D&T: We’ve said synthesis is hard, and so is ver-

ification, compared to cobbling together a model

that we can execute that gives us the right results

at the right time. Surely we can relate to that.

Really, the path to synthesis is not clear. Now sup-

posing we’re trying to do a standardization. What

should our user community’s mind-set be?

Bhatt: From the viewpoint of what layers of

abstraction we require for standardization, we

can’t determine that now, but I don’t think we

should give up for lack of trying. We could

make an attempt—say yes, we know this isn’t

what the final answer will be, but we should try

something. I think we could agree on a very

coarse level of standardization that will enable

people to stay within their own frameworks and

deliver together, which is just a simple clocking

mechanism. We should agree on one clocking

mechanism. Between the parallel world and

the serial world, there’s only one difference,

and that’s the clocking. I think we should be

able to agree on that, and then go forward.

Gajski: From a historical perspective, stan-

dardization always takes flexibility and fun out

of the design. But, it moves this industry for-

ward to the next generation of methodology

and tools.

Sanguinetti: Standardization should happen

from the bottom up. We can probably agree on

some simple things—for example, clocking—

at the lowest abstraction level. Then we can

move up to the next level. As we go higher, we

have less experience to draw on, so it will take

longer to do something that’s universally

accepted as useful. Although we have enough

experience to agree on some things now, I

think that the standardization process is going

to take a long time, because this effort is pretty

new and there just isn’t that much real use out

there. It’s often commented that the effective

standards are de facto standards first, and then

they’re ratified. We’re not in that situation yet.

Lennard: The need for communication

between objects is the primary driver that makes

standards effective. For example, competitors

in the cell-phone market will agree that to grow

the market, they all need their products to com-

municate with each other. So these companies

agree that there has to be a standard. The sec-

ond major reason for standards is an impacted

market, one where everybody already possesses

a fairly fixed market share. EDA is a primary

example of such a market. In these markets,

companies will often try to maintain market

share through holding of proprietary formats.

But this limits the customers, like Intel or Nokia,

who will then try to drive the EDA companies,

like Synopsys and Cadence, to standardize on

formats so that they have access to a broader

selection of tools and services. Market forces

such as these are going to determine any form

of standardization in the C++ space.

D&T: Does anybody have a closing remark on

anything we’ve discussed?

Sanguinetti: C++ is clearly an advance from

where we are today with Verilog and VHDL. We

see how to produce good environments that

are layered, that give us plenty of head room for

environments having a hierarchy of levels of

abstraction. We can provide the environment

that allows system design from an executable

spec through iterative refinement to include all

of the major parts of systems design and imple-

mentation from specification to verification to

implementation. This is coming, and standard-

ization will follow. We’re living in a relatively

immature world right now, but we see the tech-

nology that will give us real capability to sup-

port this rich environment.

121May–June 2001

Bhatt:
Between the parallel
world and the serial
world, there’s only
one difference, and
that’s the clocking.

Schaumont: We should not forget what C++

will actually give us. In the world of designers,

95% have a software background and 5% have

a hardware background. In the long term, it’s

far easier to bring hardware designers to work

and think like software designers than vice

versa. Platforms, also the ones in the SoC sense,

are a good step in the right direction. A plat-

form is nothing more than a service abstraction

layer, onto which a designer can implement a

service with more ease. A platform in C++ is

nothing more than a set of objects that presents

an easy-to-use design model.

Gajski: Each company cannot have its own

semantics, modeling style, guidelines, layers of

abstraction, and so on. We’ve got to work on

some standards. The easiest way to do that is to

define a minimal set of orthogonal concepts

that will support software and hardware in sim-

ulation, synthesis, and verification. We should

start with semantics, define no more than two

or three levels of abstraction, then proceed with

syntax. Syntax isn’t so important because if two

things are semantically the same, then transla-

tion from one syntax to another is a piece of

cake. This is the only way we can move forward.

Bhatt: Commitment to standardization is the

only way we’ll succeed as a community. A sec-

ond point is that there are so many auxiliary

capabilities that I can think of that people can

spawn off in terms of businesses that are going

to be required on top of this, it’s just phenom-

enal. We’re fortunate we got to hear from the

EDA side of things. Specifically looking at

HLM, please do not forget there’s a wide vari-

ety of uses for this model. It’s not necessarily

to make a chip. It’s sometimes to look at the

variety of implementations, to look at a “gold-

en reference” model, to look at things that we

don’t even possess. We still want to come out

at a time to market at the same time our com-

petition does. So there are many different rea-

sons why just being able to synthesize is not

important.

ICCAD 2000 Roundtable

122 IEEE Design & Test of Computers

Gajski:
Each company
cannot have its own
semantics, modeling
style, guidelines,
layers of abstraction,
and so on.

About the participants
Rahul Bhatt is a senior engineer at Intel Corporation, Santa Clara, California.
Giovanni De Micheli is a professor of electrical engineering and, by courtesy, of computer

science at Stanford University, Stanford, California.
Daniel D. Gajski is a professor of computer science and director of the Center for Embedded

Computer Systems at the University of California, Irvine.
Christopher K. Lennard is an architect in the Emerging Businesses business unit, Cadence

Design Systems, in San Jose, California, and chair of SLD DWG of VSIA.
Stan Liao is a principal engineer, Advanced Technology Group, at Synopsys Inc., Mountain

View, California.
John Sanguinetti is the founder of CynApps in Santa Clara, California.
Patrick Schaumont is a senior research engineer, Design Technology for Integrated

Information and Communication Systems Division, IMEC, Leuven, Belgium.
Rajesh K. Gupta, our moderator, is an associate professor of information and computer sci-

ence in the Center for Embedded Computer Systems at the University of California, Irvine.
Kaushik Roy is a professor of electrical and computer engineering at Purdue University,

West Lafayette, Indiana.

Liao: C++ is going to be a viable language for

some system design but won’t by itself be suffi-

cient. Just as the software world is moving

toward CASE with even higher levels of abstrac-

tion—for example, UML—so people won’t just

write C++ code. They’ll use other tools to inte-

grate different parts of the system. Domain-spe-

cific tools such as those for designing DSP and

control-dataflow systems will be needed and

might be used to automatically generate C++

code. But C++ itself is going to be used as the

platform for system-level design.

Lennard: We need to work out how system

design is handed off to the software design flow.

If we think we’re going to change the way that

software design is done, we’re really barking up

the wrong tree. We need standards to aid com-

munication as these system languages develop.

Also, verification and its link to system-level lan-

guages is critical, because system-level lan-

guages will be used for verification before they

are used for synthesis. Object orientation is crit-

ical to reuse; and C++ will probably be used, but

that’s not fundamental. Most important, we must

be careful how we define the architectures in

object-oriented design. Finally, the concept of

platforms will become critical, because plat-

forms can offer a set of services and can show,

at high levels of abstraction, what those services

mean in terms of performance.

D&T: Thank you all very much for your time.

123May–June 2001

Lennard:
Most important, we
must be careful how
we define the
architectures in
object-oriented
design.

16-Apr-2001

E X E C U T I V E C O M M I T E E
President: BENJAMIN W. WAH*
University of Illinois
Coordinated Sci Lab
1308 W. Main St
Urbana, IL 61801-2307

President-Elect:
WILLIS K. KING*
Past President:
GUYLAINE M. POLLOCK*
VP, Educational Activities:
CARL K. CHANG (1ST VP)*
VP, Conferences and Tutorials:
GERALD L. ENGEL*
VP, Chapters Activities:
JAMES H. CROSS†

VP, Publications:
RANGACHAR KASTURI†

VP, Standards Activities:
LOWELL G. JOHNSON*

PURPOSE The IEEE
Computer Society is the
world’s largest association of
computing professionals, and
is the leading provider of
technical information in the
field.

M E M B E R S H I P Members receive the monthly maga-
zine COMPUTER, discounts, and opportunities to serve (all
activities are led by volunteer members). Membership is open
to all IEEE members, affiliate society members, and others
interested in the computer field.

B O A R D O F G O V E R N O R S
Term Expiring 2001: Kenneth R. Anderson, Wolfgang K. Giloi,
Haruhisa Ichikawa, Lowell G. Johnson, Ming T. Liu, David G.
McKendry, Anneliese Amschler Andrews
Term Expiring 2002: Mark Grant, James D. Isaak, Gene F.
Hoffnagle, Karl Reed, Kathleen M. Swigger, Ronald Waxman, Akihiko
Yamada
Term Expiring 2003: Florenza C. Albert-Howard, Manfred Broy,
Alan Clements, Richard A. Kemmerer, Susan A. Mengel, James W.
Moore, Christina M. Schober

Next Board Meeting: 25 May 2001, Seattle, Washington

I E E E O F F I C E R S
President: JOEL B. SNYDER
President-Elect: RAYMOND A. FINDLAY
Executive Director: DANIEL J. SENESE
Secretary: DAVID J. KEMP
Treasurer: DAVID A. CONNOR
VP, Educational Activities: LYLE D. FEISEL
VP, Publications Activities: MICHAEL S. ADLER
VP, Regional Activities: ANTONIO BASTOS
VP, Standards Association: DONALD C. LOUGHRY
VP, Technical Activities: ROBERT A. DENT
President, IEEE-USA: NED R. SAUTHOFF

C O M P U T E R S O C I E T Y O F F I C E S
Headquarters Office
1730 Massachusetts Ave. NW,
Washington, DC 20036-1992
Phone: +1 202 371 0101
Fax: +1 202 728 9614
E-mail: hq.ofc@computer.org
Publications Office
10662 Los Vaqueros Cir.,
PO Box 3014
Los Alamitos, CA 90720-1314
General Information:
Phone: +1 714 821 8380
membership@computer.org
Membership and
Publication Orders: +1 800 272 6657
Fax: +1 714 821 4641
E-mail: cs.books@computer.org

*voting member of the Board of Governors †nonvoting member of the Board of Governors

VP, Technical Activities:
DEBORAH K. SCHERRER (2ND
VP)*
Secretary:
WOLFGANG K. GILOI*
Treasurer:
STEPHEN L. DIAMOND*
2000–2001 IEEE Division
V Director:
DORIS L. CARVER†

2001–2002 IEEE Division
VIII Director:
THOMAS W. WILLIAMS†

Acting Executive Director
ANNE MARIE KELLY

European Office
13, Ave. de L’Aquilon
B-1200 Brussels, Belgium
Phone: +32 2 770 21 98
Fax: +32 2 770 85 05
E-mail: euro.ofc@computer.org
Asia/Pacific Office
Watanabe Building
1-4-2 Minami-Aoyama,
Minato-ku, Tokyo 107-0062,
Japan
Phone: +81 3 3408 3118
Fax: +81 3 3408 3553
E-mail: tokyo.ofc@computer.org

E X E C U T I V E S T A F F
Acting Executive Director:
ANNE MARIE KELLY

Publisher:
ANGELA BURGESS

Acting Director, Volunteer Services:
MARY-KATE RADA

Chief Financial Officer:
VIOLET S. DOAN

Director, Information
Technology & Services: ROBERT
CARE

Manager, Research &
Planning:

